3.863 \(\int \frac{x^6}{\sqrt [4]{2+3 x^2}} \, dx\)

Optimal. Leaf size=99 \[ \frac{2}{39} \left (3 x^2+2\right )^{3/4} x^5-\frac{40 \left (3 x^2+2\right )^{3/4} x^3}{1053}+\frac{32 \left (3 x^2+2\right )^{3/4} x}{1053}-\frac{128 x}{1053 \sqrt [4]{3 x^2+2}}+\frac{128 \sqrt [4]{2} E\left (\left .\frac{1}{2} \tan ^{-1}\left (\sqrt{\frac{3}{2}} x\right )\right |2\right )}{1053 \sqrt{3}} \]

[Out]

(-128*x)/(1053*(2 + 3*x^2)^(1/4)) + (32*x*(2 + 3*x^2)^(3/4))/1053 - (40*x^3*(2 + 3*x^2)^(3/4))/1053 + (2*x^5*(
2 + 3*x^2)^(3/4))/39 + (128*2^(1/4)*EllipticE[ArcTan[Sqrt[3/2]*x]/2, 2])/(1053*Sqrt[3])

________________________________________________________________________________________

Rubi [A]  time = 0.0282477, antiderivative size = 99, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {321, 227, 196} \[ \frac{2}{39} \left (3 x^2+2\right )^{3/4} x^5-\frac{40 \left (3 x^2+2\right )^{3/4} x^3}{1053}+\frac{32 \left (3 x^2+2\right )^{3/4} x}{1053}-\frac{128 x}{1053 \sqrt [4]{3 x^2+2}}+\frac{128 \sqrt [4]{2} E\left (\left .\frac{1}{2} \tan ^{-1}\left (\sqrt{\frac{3}{2}} x\right )\right |2\right )}{1053 \sqrt{3}} \]

Antiderivative was successfully verified.

[In]

Int[x^6/(2 + 3*x^2)^(1/4),x]

[Out]

(-128*x)/(1053*(2 + 3*x^2)^(1/4)) + (32*x*(2 + 3*x^2)^(3/4))/1053 - (40*x^3*(2 + 3*x^2)^(3/4))/1053 + (2*x^5*(
2 + 3*x^2)^(3/4))/39 + (128*2^(1/4)*EllipticE[ArcTan[Sqrt[3/2]*x]/2, 2])/(1053*Sqrt[3])

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 227

Int[((a_) + (b_.)*(x_)^2)^(-1/4), x_Symbol] :> Simp[(2*x)/(a + b*x^2)^(1/4), x] - Dist[a, Int[1/(a + b*x^2)^(5
/4), x], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rule 196

Int[((a_) + (b_.)*(x_)^2)^(-5/4), x_Symbol] :> Simp[(2*EllipticE[(1*ArcTan[Rt[b/a, 2]*x])/2, 2])/(a^(5/4)*Rt[b
/a, 2]), x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{x^6}{\sqrt [4]{2+3 x^2}} \, dx &=\frac{2}{39} x^5 \left (2+3 x^2\right )^{3/4}-\frac{20}{39} \int \frac{x^4}{\sqrt [4]{2+3 x^2}} \, dx\\ &=-\frac{40 x^3 \left (2+3 x^2\right )^{3/4}}{1053}+\frac{2}{39} x^5 \left (2+3 x^2\right )^{3/4}+\frac{80}{351} \int \frac{x^2}{\sqrt [4]{2+3 x^2}} \, dx\\ &=\frac{32 x \left (2+3 x^2\right )^{3/4}}{1053}-\frac{40 x^3 \left (2+3 x^2\right )^{3/4}}{1053}+\frac{2}{39} x^5 \left (2+3 x^2\right )^{3/4}-\frac{64 \int \frac{1}{\sqrt [4]{2+3 x^2}} \, dx}{1053}\\ &=-\frac{128 x}{1053 \sqrt [4]{2+3 x^2}}+\frac{32 x \left (2+3 x^2\right )^{3/4}}{1053}-\frac{40 x^3 \left (2+3 x^2\right )^{3/4}}{1053}+\frac{2}{39} x^5 \left (2+3 x^2\right )^{3/4}+\frac{128 \int \frac{1}{\left (2+3 x^2\right )^{5/4}} \, dx}{1053}\\ &=-\frac{128 x}{1053 \sqrt [4]{2+3 x^2}}+\frac{32 x \left (2+3 x^2\right )^{3/4}}{1053}-\frac{40 x^3 \left (2+3 x^2\right )^{3/4}}{1053}+\frac{2}{39} x^5 \left (2+3 x^2\right )^{3/4}+\frac{128 \sqrt [4]{2} E\left (\left .\frac{1}{2} \tan ^{-1}\left (\sqrt{\frac{3}{2}} x\right )\right |2\right )}{1053 \sqrt{3}}\\ \end{align*}

Mathematica [C]  time = 0.026938, size = 54, normalized size = 0.55 \[ \frac{2 x \left (\left (3 x^2+2\right )^{3/4} \left (27 x^4-20 x^2+16\right )-16\ 2^{3/4} \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{3}{2};-\frac{3 x^2}{2}\right )\right )}{1053} \]

Antiderivative was successfully verified.

[In]

Integrate[x^6/(2 + 3*x^2)^(1/4),x]

[Out]

(2*x*((2 + 3*x^2)^(3/4)*(16 - 20*x^2 + 27*x^4) - 16*2^(3/4)*Hypergeometric2F1[1/4, 1/2, 3/2, (-3*x^2)/2]))/105
3

________________________________________________________________________________________

Maple [C]  time = 0.028, size = 43, normalized size = 0.4 \begin{align*}{\frac{2\,x \left ( 27\,{x}^{4}-20\,{x}^{2}+16 \right ) }{1053} \left ( 3\,{x}^{2}+2 \right ) ^{{\frac{3}{4}}}}-{\frac{32\,{2}^{3/4}x}{1053}{\mbox{$_2$F$_1$}({\frac{1}{4}},{\frac{1}{2}};\,{\frac{3}{2}};\,-{\frac{3\,{x}^{2}}{2}})}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^6/(3*x^2+2)^(1/4),x)

[Out]

2/1053*x*(27*x^4-20*x^2+16)*(3*x^2+2)^(3/4)-32/1053*2^(3/4)*x*hypergeom([1/4,1/2],[3/2],-3/2*x^2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{6}}{{\left (3 \, x^{2} + 2\right )}^{\frac{1}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(3*x^2+2)^(1/4),x, algorithm="maxima")

[Out]

integrate(x^6/(3*x^2 + 2)^(1/4), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{x^{6}}{{\left (3 \, x^{2} + 2\right )}^{\frac{1}{4}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(3*x^2+2)^(1/4),x, algorithm="fricas")

[Out]

integral(x^6/(3*x^2 + 2)^(1/4), x)

________________________________________________________________________________________

Sympy [C]  time = 0.786577, size = 27, normalized size = 0.27 \begin{align*} \frac{2^{\frac{3}{4}} x^{7}{{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{7}{2} \\ \frac{9}{2} \end{matrix}\middle |{\frac{3 x^{2} e^{i \pi }}{2}} \right )}}{14} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**6/(3*x**2+2)**(1/4),x)

[Out]

2**(3/4)*x**7*hyper((1/4, 7/2), (9/2,), 3*x**2*exp_polar(I*pi)/2)/14

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{6}}{{\left (3 \, x^{2} + 2\right )}^{\frac{1}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(3*x^2+2)^(1/4),x, algorithm="giac")

[Out]

integrate(x^6/(3*x^2 + 2)^(1/4), x)